Groups all of whose undirected Cayley graphs are determined by their spectra
نویسندگان
چکیده
The adjacency spectrum Spec(Γ) of a graph Γ is the multiset of eigenvalues of its adjacency matrix. Two graphs with the same spectrum are called cospectral. A graph Γ is “determined by its spectrum” (DS for short) if every graph cospectral to it is in fact isomorphic to it. A group is DS if all of its Cayley graphs are DS. A group G is Cay-DS if every two cospectral Cayley graphs of G are isomorphic. In this paper, we study finite DS groups and finite Cay-DS groups. In particular we prove that a finite DS group is solvable, and every non-cyclic Sylow subgroup of a finite DS group is of order 4, 8, 16 or 9. We also give several infinite families of non-Cay-DS solvable groups. In particular we prove that there exist two cospectral non-isomorphic 6-regular Cayley graphs on the dihedral group of order 2p for any prime p ≥ 13.
منابع مشابه
On Groups all of whose Undirected Cayley Graphs of Bounded Valency are Integral
A finite group G is called Cayley integral if all undirected Cayley graphs over G are integral, i.e., all eigenvalues of the graphs are integers. The Cayley integral groups have been determined by Kloster and Sander in the abelian case, and by Abdollahi and Jazaeri, and independently by Ahmady, Bell and Mohar in the nonabelian case. In this paper we generalize this class of groups by introducin...
متن کاملOn the Finite Groups that all Their Semi-Cayley Graphs are Quasi-Abelian
In this paper, we prove that every semi-Cayley graph over a group G is quasi-abelian if and only if G is abelian.
متن کاملGroups all of whose undirected Cayley graphs are integral
Let G be a finite group, S ⊆ G \ {1} be a set such that if a ∈ S, then a−1 ∈ S, where 1 denotes the identity element of G. The undirected Cayley graph Cay(G, S) ofG over the set S is the graphwhose vertex set is G and two vertices a and b are adjacent whenever ab−1 ∈ S. The adjacency spectrum of a graph is the multiset of all eigenvalues of the adjacency matrix of the graph. A graph is called i...
متن کاملOn the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملOn the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کامل